- Posts: 196
- Thank you received: 0
planning fireball
merci d'avance
Please Log in or Create an account to join the conversation.
Breizh Skiff Project, YCCarnac.
Please Log in or Create an account to join the conversation.
Please Log in or Create an account to join the conversation.
En lisant un peu toute les rubriques, meme si ma question était adressée à tous, c'est vrai que je pensais en particulier à JM qui a l'air de savoir pleins de choses
Je ne sais pas si tu l'as vu mais deja, dans la section des articles, il y a un article qui te permettra de debroussailler le sujet (Definition du skiff - www.breizhskiff.com/articles/articles/wh...iff/what_a_skiff.php ). Il tente de definir le skiff a partir de sa vitesse de planning au pres et donc propose une maniere de la calculer...
Si on prend la peine de soigneusement le comprendre, il y a pas mal de choses a en tirer
Et c'est de Jean-Michel justement....
Ouais, j'y arriiiii.... PLOUF !
Please Log in or Create an account to join the conversation.
et pas trop dur à utiliser (parceque j'en ai deja essaillé quelques autres mais les nurbs et les vortex je comprend pas grand chose)
++
Please Log in or Create an account to join the conversation.
Un bon bouquin, pour débroussailler tout cela, et que je vous conseil à tous d'ailleurs est "Architecture Navale, Connaissance et Pratique" de D. Presles et D. Paulet.
Please Log in or Create an account to join the conversation.
Mais le probleme c'est que je ne connais pas l'exactitude de cette formule vu qu'en changeant la masse volumique de l'eau par celle de l'air sa marche aussi en aero. On avait utilisé cette formule avec mon pere lorsqu'on avait voulu calculer la force exercée sur notre baie vitrée donnant pleine rade de brest lors d'une tempete...900kg... :o . Donc je ne sais pas si on arrivera à une valeur précise :'( . Sinon la formule que vous m'avez donné me semble peut précise vu le peu de facteurs qui rentre en jeu mais peut etre que je me trompe merci en tout cas pour la rapidité on voit qu'on a affaire a des skiffs
Please Log in or Create an account to join the conversation.
- David Balkwill
- Offline
- User
Lisons Bethwaite...
This is an article published in Seahorse, issue "June 2000".
It has always been a discussion: To polish or to sand with 400 grit. Although water seems to run smoother over the sanded surface, is this what we want? Is friction really decreased by sanding? Read what Frank Bethwaite has to tell about it:
Polish and skin friction
Our overriding object in building what has since become the 29er was that "it should sail like a skiff to train for a skiff". This meant designing for tacking downwind, with downwind speeds approaching wind speed. However, this was always going to be increasingly difficult with this smaller boat, because small boats do not enjoy the speeds natural to bigger boats.
The "dynamically humpless hull" offered one path, but because nobody knows what makes a hull "humpless" this was a case of try it and see. Julian suggested that his current to Eighteen footer design would scale down better than the 49er would. So I did the sums to size the new boat for two healthy adolescents, lofted the smaller boat and got on with building it from narrow timber planks edge glued and glassed inside out.
It was always a possibility that the scaling down to 0.79 the size of the Eighteen might alter its dynamic characteristics. So as soon as it was fit to float, we towed it at various speeds and weights to establish whether or not this smaller shape developed the hump in it's drag curve, which is normally expected, or whether it remained another of the strange "humpless" genre that we seem to have happened upon. Its surface, undercoated and dry sanded with 80-grit paper, was fair but not polished. Not surprisingly the drags were higher than expected. Further, there was a hump, but this was a different sort of hump. A dynamic hump would have given a steep drag rise from about six to eight knots, in other words, just above it's 5kt hull speed, and this would have become steeper at heavier weights. What we had measured was a very steep hump between four and six knots, which did not change at all between light (160kg) and heavy (230kg) total weight. We concluded that whatever the reason, this was not a dynamic hump, so we had what we wanted and proceeded. That was in March '97.
Two years later we measured the drag of a polished production 29er. The drag curves, both at 500lb (230kg), of the polished and the unpolished hulls are shown in Fig1. What they show is the different effect on drag of 1) skin friction and 2) a turbulent boundary layer.
Skin Friction.
The smoothest surface always gives the smallest friction, so at all speeds the polished hull will have a fraction less drag than the rough one.
Boundary layer.
A laminar boundary layer will give about half the drag of a turbulent one.
What Fig1 shows are three separate boundary layer regimes as between the two boats.
1) From rest up to some very low speeds the boundary layer is always laminar. In this case this speed is about three knots for the boat with the rougher surface. (You can see that by looking at your wake close to the transom when the boundary layer flow begins to become turbulent.) So from rest up to about three knots the small difference in drag is due solely to the greater skin friction of the rougher surface.
2) At about four knots the rough surface trips the boundary layer of the rougher boat into turbulent flow over the whole wetted surface. The smooth surface of the polished boat continues to run laminar. At five knots this trip into turbulent flow has nearly doubled the drag of the rougher boat.
3) At about six knots the boundary layer over the polished hull begins to trip from laminar to turbulent. This starts at the stern. As speed increases the transition point moves progressively forward towards the bow, until at 10 knots the polished hull too is running almost entirely turbulent and there remains only the small difference in drag due to skin friction.
David Maiden, President of the 49er Association of Australia, commented that he had used a slow-dissolving detergent as a tracer, in order to find out more about the flow over his 49er. He measured that the transition line from a laminar to a turbulent boundary layer was 3ft or 4ft aft of the bow at a speed of about seven knots.
All these measurements suggest that it does pay to polish, and to polish well.
Frank Bethwaite.
David Balkwill ; Used to be President IMCA France 06 70 25 30 18
Please Log in or Create an account to join the conversation.
Please Log in or Create an account to join the conversation.
- David Balkwill
- Offline
- User
David Balkwill ; Used to be President IMCA France 06 70 25 30 18
Please Log in or Create an account to join the conversation.
Mais où est Jean-Mi ?
Voilà voilà...
Scusez, je suis complètement à la masse ces derniers temps!
Bon, alors, tu disais: vitesse de planing? Très bonne question!
Au vu des réponses ci-dessus, tu as probablement déjà compris que ce n'est pas une mince affaire de la calculer... En fait, le problème est TRES complexe, et c'est la raison pour laquelle tu ne trouveras pas facilement des infos la-dessus.
Déjà, il n'y a pas unanimité quant à la définition même du planing. Le phénomène en soi est assez simple: à mesure que la vitesse du bateau augmente, la force hydrodynamique augmente elle aussi, et tend à se combiner à la poussée d'Archimède pour soulever le bateau. Comme ce dernier est enfoncé moins profondément dans l'eau, il y a moins de surface de coque en frottement avec l'eau, et donc la résistance à l'avancement diminue. Résultat net: la vitesse augmente.
Mais à partir de quelle force hydrodynamique considère-t-on que le bateau plane? Autrement dit, quelle proportion du poids du bateau cette force doit-elle soulever pour qu'on soit en régime de planing? C'est loin d'être évident.
La formule F = 1/2cos(alpha)mSV^2 est complètement générique, même si elle est simplifiée. Mais elle est de peu d'utilité dans ce cas-ci. Il faudrait en effet se donner la valeur de F pour en déduire celle de V. D'autre part, il est impossible d'estimer simplement la valeur de l'angle alpha, qui représente l'inclinaison de la force F par rapport à la verticale, et qui est une manifestation physique du frottement (donc de la traînée).
Une autre approche consiste à utiliser les travaux de Froude. Il en résulte une formule V = F*SQRT(9.81*L) où L est la longueur de flottaison, et F un coefficient(dit coefficient de Froude). On considère en général que pour F = 0.4, la résistance de vague (due à la vague d'étrave - le "hump" de F. Bethwaite) devient prépondérante. On dit alors que la vitesse qui y correspond est la vitesse "limite" du bateau en régime archimédien, et que pour aller plus vite, il doit obligatoirement planer. Mais c'est très théorique, parce que la conception de la coque joue un rôle extrêmement important. Selon cette formule, tout bateau de 4.20m "plafonne" à environ 5 noeuds, or de nombreux dériveurs sont capables d'aller plus vite que ça sans pour autant planer (le I14 par exemple).
Malgré tout, on observe que le planing se déclenche en général pour des valeurs de Froude comprises entre 0.9 et 1.1, avec des extrêmes à 0.7 et 1.5!! Comme tu vois, la fourchette est large... Le problème principal est que les travaux de Froude repose sur le principe de similitude (variation linéaire des paramètres avec l'échelle). Toute l'architecture navale repose sur ce principe, selon lequel une maquette donne une représentation fidèle et conforme des phénomènes qui affecteront le bateau en vraie grandeur. Or, pour les petits bateaux genre dériveurs, le principe de Froude ne s'applique en fait pas, où mal! Toute la difficulté de conception des dériveurs vient de là.
Les travaux de Savitsky sont intéressants; malheureusement, les résultats ne s'appliquent en principe qu'aux coques en V, à angle de varangue très faible. J'ai essayé d'adapter les résultats de Savitsky au cas des dériveurs, mais sans grand succès. Si ça t'intéresse, je peux toujours les publier.
Au final, il reste deux approches possibles:
- les calculs hydrodynamiques lourds (en anglais: CFD - Computational Flow Dynamic), basés sur des modèlisations fines par éléments finis. C'est évidemment hors de portée de l'amateur lambda, mais certaines écoles d'ingénieur te refileront certainement des résultats et/ou des indications utuiles.
- les tests en vraie grandeur. C'est comme ça que travaille Frank Bethwaite. Tu prends la coque que tu veux tester, tu bricoles un dynamomètre de fortune que tu couples au cable de remorquage, tout le monde embarque dans le Zodiac, et tu remorques! Ca te donne une mesure réelle de la résistance à l'avancement, en conditions de nav. En plus, tu navigues au lieu de calculer
Je te suggère la deuxième approche. C'est tout-à-fait faisable, et te permettrait de mesurer (et d'analyser ensuite) les courbes de résistance à l'avancement de ton Fire pour différentes conditions de nav (poids, état de la mer, allure, état de la coque, etc.).
Tiens-nous au courant.
(je n'écris plus très souvent, mais quand je poste, qu'est-ce que je tartine )
Ceux qui exigent pour eux la liberté de parler sont souvent ceux qui refusent aux autres la liberté de penser...
Please Log in or Create an account to join the conversation.
Je pense que l'on va deja calculer le Va avec le quel il plane au portant et au prés et aprés on verra. En commencant ce projet au début de l'année je pensais vrément que l'on arriverait à quelque chose de sympa mais la je me pose de + en + de question. Encore merci pour toute votre aide.
Please Log in or Create an account to join the conversation.
Julien Antier - Breizhskiff Project
International 14 - FRA 1571 - Windshear
Please Log in or Create an account to join the conversation.
Le problème principal est que les travaux de Froude repose sur le principe de similitude (variation linéaire des paramètres avec l'échelle). Toute l'architecture navale repose sur ce principe, selon lequel une maquette donne une représentation fidèle et conforme des phénomènes qui affecteront le bateau en vraie grandeur. Or, pour les petits bateaux genre dériveurs, le principe de Froude ne s'applique en fait pas, où mal! Toute la difficulté de conception des dériveurs vient de là.
A mon avis, il n'y a aucune raison que la similitued de Froude ne s'applique pas aux dériveurs. Je suis même complètement persuadé que cette similitude s'applique très bien au cas des coques de dériveurs. Non ? La similitude de Froude fonctionne pour les vedettes planantes comme pour les pétroliers de 500 000 tonnes...
Par contre, il faut bien être conscient de ce que l'on mesure à partir de la maquette. La seule donnée fiable lors d'un essai avec une maquette (ou d'un essai réel avec dynamomètre d'ailleurs) est la résistance à l'avancement du navire.
Le problème du dériveur, par rapport à cet essai très simple est :
- Le devis de masse variable dynamiquement
- La force vélique (en particulier du spi assymétrique) dirigée vers le haut, et qui a une part prépondérante dans le départ au planning. A mon avis c'est cette force qu'il faut estimer et rajouter aux études types stavisky pour avoir un modèle à peu près correct. Il n'y a pas de raison que ca ne marche pas.
En résumé, d'après moi, il y a départ au planninig si et seulement si la composante verticale de la force vélique + la force hydro (type stavitsky, (c'est a dire le fameu rauSV²)) = Le poids du bateau.
Mais c'est très théorique, parce que la conception de la coque joue un rôle extrêmement important. Selon cette formule, tout bateau de 4.20m "plafonne" à environ 5 noeuds, or de nombreux dériveurs sont capables d'aller plus vite que ça sans pour autant planer (le I14 par exemple).
Malgré tout, on observe que le planing se déclenche en général pour des valeurs de Froude comprises entre 0.9 et 1.1, avec des extrêmes à 0.7 et 1.5!! Comme tu vois, la fourchette est large...
C'est sûr ! Il faut prendre ces ratios avec précaution ! Quand on dit qu'un bateau plafonne à froude = 0.4 ou 0.5 c'est sous entendu un navire archimédien évidemment ! Il n'y a qu'à prendre le cas des coques fines (orange II est loin de planer et son Froude est à faire peur !) pour comprendre la limite de ce ratio. Mais ne pas confondre similitude de Froude qui fonctionne (je le répète) très bien, avec classement des types de coques (déplacement, fine, ou planante...) ce qui n'a rien à voir. Les dériveurs en règle générale ne sont pas archimédien... il sont plutôt coque fine au près, un peu gîté, ou les poids avancés, et plutôt planants bien à plat... c'est donc pas simple.
Je ne suis pas sûr d'avoir été très clair... Mais bon... surtout n'abandonne pas ton sujet de TPE je pense que c'est passionnant, et qu'il y a trop, ou pas assez de "calculs", tu trouveras de toute facon beaucoup de notions bien interressantes dans tout cela !
Please Log in or Create an account to join the conversation.
ou Fhydro est la composante sur l'axe des Y de la force de pression=1/2*MVeau*Surface*Vitesse^²*cos alpha
Sinon j'ai encore relu le tome 1 de Pierre Gutelle, je comprends pas ce passage. Je vais essayer de voir sa avec mon papa (il a donné des cours de statique du navire mais il se souvient plus de sa en détail...ca m'aurait pourtant arranger )
Please Log in or Create an account to join the conversation.
RS800-RS200-Wing
Auparavant, MPS-29er-L4K-RS600-RS500-RS400!
Please Log in or Create an account to join the conversation.
Please Log in or Create an account to join the conversation.
Oui et non.A mon avis, il n'y a aucune raison que la similitued de Froude ne s'applique pas aux dériveurs. Je suis même complètement persuadé que cette similitude s'applique très bien au cas des coques de dériveurs. Non ? La similitude de Froude fonctionne pour les vedettes planantes comme pour les pétroliers de 500 000 tonnes...
Les traveaux de William Froude postulent deux choses:
1. La résistance totale à l'avancement Rt est la somme de la résistance de frottement Rf et de... tout le reste: la résistance résiduaire Rr. Dans cette dernière, la résistance dite de vague est supposée prépondérante.
Donc: Rt = Rf + Rr
2. Le principe de similitude (principe empirique) postule ensuite que pour une géométrie de coque donnée, le rapport résistance résiduaire/déplacement est constant pour un même nombre de Froude - défini comme Fn = V/SQRT(gL).; d'autre part, la résistance de frottement est entièrement et uniquement dépendante du nombre de Reynolds.
En réalité, l'hypothèse de Froude ignore complètement la force de résistance due à la traînée dynamique (qui est un phénomène qui ne peut se comprendre correctement qu'en 3D). Pas de portance dynamique sans traînée. Or, il se trouve que les dériveurs en sont proportionnellement beaucoup plus affectés que les grands navires.
Tout à fait d'accord.Par contre, il faut bien être conscient de ce que l'on mesure à partir de la maquette. La seule donnée fiable lors d'un essai avec une maquette (ou d'un essai réel avec dynamomètre d'ailleurs) est la résistance à l'avancement du navire.
Pas tout à fait d'accord La composante verticale de la force vélique existe, oui, mais elle n'est à mon avis pas prépondérante (sauf à contrecarrer l'enfournement). Pas mal de skiffs planent au près, sans spi. Et à plat.- La force vélique (en particulier du spi assymétrique) dirigée vers le haut, et qui a une part prépondérante dans le départ au planning. A mon avis c'est cette force qu'il faut estimer et rajouter aux études types stavisky pour avoir un modèle à peu près correct. Il n'y a pas de raison que ca ne marche pas.
Ca me paraît un peu trop simple; la composante archimédienne reste présente (ça reste un bateau). Il y a une zône intermédiaire dite de "régime forcé", variable selon les coques, qui apparaît nettement sur la plupaart des courbes de résistance.En résumé, d'après moi, il y a départ au planninig si et seulement si la composante verticale de la force vélique + la force hydro (type stavitsky, (c'est a dire le fameu rauSV²)) = Le poids du bateau.
Là, je suis tout à fait d'accord avec toi!!!c'est donc pas simple.
Et je suis également d'accord avec la conclusion finale: surtout Yvan, n'abandonne pas!! Il y a déjà pas mal de notions à décortiquer rien qu'au niveau de la description des phénomènes. Les calculs, c'est assez secondaire, puisque de toute façon, il s'agit d'approximations.
Ceux qui exigent pour eux la liberté de parler sont souvent ceux qui refusent aux autres la liberté de penser...
Please Log in or Create an account to join the conversation.
Please Log in or Create an account to join the conversation.
Donc: Rt = Rf + Rr
2. Le principe de similitude (principe empirique) postule ensuite que pour une géométrie de coque donnée, le rapport résistance résiduaire/déplacement est constant pour un même nombre de Froude - défini comme Fn = V/SQRT(gL).; d'autre part, la résistance de frottement est entièrement et uniquement dépendante du nombre de Reynolds.
Tout à fait d'accord ! Sauf sur le côté "empirique" On peut l'expliquer assez bien avec quelques crobards, mais ca nous emmenerai trop loin ! (Il faudrait quelques apéros en tête à tête pour approfondir ce sujet...)
En réalité, l'hypothèse de Froude ignore complètement la force de résistance due à la traînée dynamique (qui est un phénomène qui ne peut se comprendre correctement qu'en 3D). Pas de portance dynamique sans traînée. Or, il se trouve que les dériveurs en sont proportionnellement beaucoup plus affectés que les grands navires.
Je ne sais pas, et ne suis pas convaincu... Parlier a bien fait des essais en bassin pour l'hydraplaneur, ou les choses sont trés "dynamiques", et cela fonctionne assez bien (ce n'est pas la faute de l'essai en bassin si le bateau est plus lourd que prévu ). Il y a bien d'autres exemples de navires planant essayés en bassin... pourquoi es-tu aussi catégorique ? Honnêtement, il faudrait creuser un peu là, comme ca, c'est pas intuitif...
La composante verticale de la force vélique existe, oui, mais elle n'est à mon avis pas prépondérante (sauf à contrecarrer l'enfournement). Pas mal de skiffs planent au près, sans spi. Et à plat.
Pour le spi assymétrique il n'y a aucun doute que sa force verticale est prépondérante, j'en veux pour preuve "imagée" la "video la plus extreme sur le skiff" trouvée sur ce forum :
www.rclass.org/video/movies/Stagecoach2.mov
Impressionnant quand même ! Et là, clairement, l'archimédien n'existe plus...
Pour le près cette force est sans doute beaucoup moins importante, mais elle existe certainement, en particulier due à la pente de l'étai.
Bon, Yvan, j'éspère que tu arrives à prendre quelques brides de nos commentaires décousus... En tout cas bon courage...et bonnes vacances !
Please Log in or Create an account to join the conversation.